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IMPACT OF AN EVAPORATING DROP ON A HEATED WALL 

Yu. A. Buevich and V. N. Mankevich UDC 536.24:536.423.1 

The interaction of a superheated surface with a drop impinging upon it is treated 
in the quasistationary approximation, neglecting dissipative effects. 

The cooling of heat-transfer surfaces by jets of dispersed liquid and by other streams 
carrying drops is widely employed in contemporary power engineering, metallurgy, cryogenics, 
and other branches [1-5], and has therefore been studied intensively. Primary attention has 
been paid to experimental study of the motion and heat transfer of a dispersed flow with the 
surfaces being cooled under conditions approximating those of industry [6-11]. Many fewer 
papers have been published on the analysis of elementary interactions of single drops with 
walls, which determine the main features of real cooling processes. Aside from numerous 
studies of the evaporation of drops lying on a surface, and their impact with walls without 
a phase transition, we point out that the dynamic and thermal interaction of drops with a 
surface complicated by evaporation was studied in [12-18]. 

As a drop approaches a superheated wall, the part of the surface of the drop facing the 
wall absorbs heat, which is expended mainly in evaporating liquid. The vapor which is formed 
is squeezed out of the thin layer between the drop and the wall, which leads to an increase 
in the pressure in it and to the production of forces which impede the motion of the drop. 
If other conditions remain the same, and the initial kinetic energy of the drop is high enough 
or the wall temperature is low enough, the thickness of this layer may become less than the 
height of the roughness protuberances on the wall or the range of the forces of molecular at- 
traction, so that the drop comes into direct contact with the wall. For a low kinetic energy 
or a high wall temperature the drop is slowed down before this layer becomes sufficiently 
thin; as a result the drop (or the smaller drops which result from its fragmentation) re- 
bounds from the surface. The critical values of the energy and temperature correspond to 
the well-known heat-transfer crisis [1-18]. The analysis of the conditions for the onset of 
this crisis is 0f~primary interest for applications. 

Basic Assumptions. The combined nonlinear and unsteady problems of hydrodynamics and 
heat-conduction theory with unknown boundaries which arise in the theoretical study of this 
phenomenon are exceptionally complex, and a constructive analysis is possible only by making 
very substantial simplifications. We completely neglect the initial underheating of the drop 
up to the saturation temperature, the radiation heat flux to it, ordinary hydrodynamic re- 
sistance to its motion, the change in mass of the drop in the collision process, and the cor- 
responding reaction. We assume that all the mechanical and thermophysical parameters of the 
liquid and vapor or the vapor--gas mixture are constant and uniform, corresponding, i.e., to 
the saturation temperature or to a certain mean temperature in the vapor layer. We assume 
that the wall temperature is independent of the evaporation of the drop, which is admissible 
if the heat capacity and thermal conductivity of the wall material are high enough [16, 18]. 
In addition, in analyzing the motion and heat transfer in the vapor layer we neglect the de- 
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pendence of the equilibrium temperature at the evaporation surface on the pressure in it, 
the velocity and temperature jumps at its boundaries, and the forces of molecular interac- 
tion between them. It can be shown that under normal conditions this is quite admissible if 
the surface is rough and h ~I0 -~ cm. None of these assumptions are basic, in the sense that 
none determine the principal features of the impact of evaporating drops on superheated sur- 

faces, and appropriate corrections for them can be introduced into the analysis without par- 
ticular difficulty. 

The following assumptions are more serious: In order to obtain fundamental results in 
visible form and not to complicate the basic idea by details of the calculations, we first 
neglect nonstationary effects in calculating both the heat flux to the evaporation surface 
and motion in the vapor layer, treating the hydrodynamics and heat-conduction equations in 
the quasistationary approximation. Second, we neglect dissipative effects related to motion 
within the drop, and the additional pressure force resulting from the slowing down of the 
drop, since this would necessitate either the escape of part of the vapor (or vapor--gas mix- 
ture) from the vapor layer during its thinning down, or the flow of vapor into the layer dur- 
ing its thickening, even when there is no evaporation. The third simplification concerns 
the shape of the drop, and is introduced later; practically, it reduces to the modeling of 
the actual deformation of a drop by a liquid disk of varying radius. It is clear then that 
it is not necessary to consider motion within the drop. In a number of cases these assump- 
tions may appreciably distort the real physical picture of the collision process. We discuss 
this briefly below. 

Basic Equations. Let us consider a drop of volume V impinging normally on a wall with 
a velocity vo. Under the assumptions made, the equation of conservation of energy is written 
in the form 

6E + 6F = 6A, (1) 

where 6A is an element of work performed on the drop by pressure forces due to the evapora- 
tion of the drop as it approaches the wall; ~A is generally not a total variation, just as 
dA is not a total differential. 

The free "potential" energy of the surface tension is equal to ~ times the surface area 
of the drop, and is a functional of the unknown shape of the deformed drop, which is uniquely 
determined, as is the position of the center of mass of the drop, by a function 4 in the 
laboratory coordinate system. The variation of the work also depends functionally on this 
function. The form of 4 depends on the time. 

Obviously the approach and subsequent withdrawal of the drop from the wall may, in 
principle, correspond to each of an infinite set of trajectories in function space {4}. In 
a certain sense the limiting trajectories correspond to a change in time of only the shape 
of the drop or only its position (the drop is deformed but does not approach the wall, or 
it approaches the wall but is not deformed). Actually, a completely definite trajectory must 
be realized, and the problem arises of choosing it from all which are possible in principle. 
In significantly dissipative statistical systems such a choice is usually made within the 
framework of a phenomenological description by applying one of the extremum principles of the 
thermodynamics of irreversible processes [19]. In the nondissipative system considered here 
it is natural to use as a variational principle a variant of the general Le Chatelier prin- 
ciple, according to which the real variation 64 must be such that the external action of the 
wall on the drop is minimum. This leads at once to the problem of finding a function ~ for 
which 6E/~ 4 = 0, ~2E/~42 > 0, where ~/~4 symbolizes the variational derivative. Formally, 
this problem can be written as follows: 

6~-(--F § A)= 0,-~ (--F-- A)> 0, (2) 

where 6A/64 and ~2A/642 are to be understood as limits of the ratios of the elementary work 
6A and its variation ~2A to 64 and ~42 as ~4 § 0. 

In view of the very serious difficulties involved in the analysis of this kind of prob- 
lem, even in considerably simpler cases, it is natural to convert from the function space 
{4}, characterizing the actual system with an infinite number of degrees of freedom, to or- 
dinary phase space of finite dimensionality. In principle this can be done by the well-known 
method of collocations, specifying 4 a priori as a sum of a finite number of specially se- 
lected functions of spatial coordinates (e.g., spherical harmonics) with time-dependent co- 
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efficients, playing the role of phase-space coordinates. The simplest version of such a 

method corresponds to representing the drop as a disk of radius R and thickness V/vR 2, sepa- 

rated from the surface by a plane parallel vapor layer of thickness h. In this case, which 
we consider in this paper, the phase space is the (R, h) plane. 

The free energy and the value R = R0 at which it is minimum are expressed in the form 

(3) 

To calculate the force f acting on the drop we consider quasistationary problems of mo- 
tion and heat transfer in the vapor layer, assuming that it is thin and that the Reynolds 
and Peclet numbers are small. From the hydrodynamics problem, assuming no slipping at both 

boundaries of the layer, we calculate an expression for the mass of evaporating liquid j = 
--(h3/6~r)(3p/3r), and from the heat-conduction problem, an expression for the heat flux to 

the drop q = (I/h)AT, AT = T w -- T s (the quantities j and q refer to unit area of the evapora- 
tion surface); setting q = jL, we obtain an equation for the pressure in the vapor layer; 

solving it and integrating the result over the evaporation surface, we obtain 

3 ~  v ~ A T  R 4 

f = 2 L h ~ (4)  

The quantity 6A = f6h, and problem (2) takes the following form in the variables R andh: 

d s dF ~ d h  ", dZ ( dF dh ) +1-76):~ (5) dR~ dR + f ~ > 0 .  

Integrating the first equation and using (3) and (4), we obtain 

3H dh 8 ( - - C - ~  P - -  R~ ] ~AT 
h ~ d R  - -  R ~ , . ,  Rz ], H -- 6L ( 6 )  

The initial condition for this equation is h = ~ at R = Ro. We determine the constant C by 

using the fact that in the present case Eq. (i) shows that dE = --dF + fdh. Integrating this 
equation with the initial condition E = Eo at R = Ro, and requiring that E = E, = 0 for a 

certain R = R, > Ro, we obtain 

C = W e  R~ W e - -  9v~176 ( 7 )  
R , - - R o '  4~ 

Introducing the dimensionless variables 

= hi(HR') '/3, x :  RIRo, x ,  = R,/Bo, ( 8 )  

we obtain from (6) and (7) the problem 

8 d~] We 1+1 1) 
_ ; ~ 1 - + o o ,  x - + l ,  ( 9 )  

~1 ~ dx x , -  1 x ~ x 3 x s 

whose solution has the form 

3 x ,  -- 1 x a , x 2 

The velocity of the center of mass is 

8 /3 
(io) 

- - v  dt -- dt + 2 c~t - h ~  - - \ - s  - 2  /~ ) - 7 / - '  (11) 
~ g 

which yields an equation for determining the R = R, at which dzc/dt , and therefore also E, 

vanish. By using (6) and (7), this equation can be written in the variables of (8) in the 

form 

_ ~ + I - = -v, ~l~, = ~l (~,), ~ : ~-~o ) (12) 
3 ( x , - -  1) x, ~.  

Equation (12) determines x,, and thereby closes Eq. (i0) for the dimensionless n of the vapor 
layer, describing the trajectories of the system in the phase plane. 

Phase-Plane Diagram of the Collision Process. The state of the system at any instant 
is uniquely characterized by the values of R and h (or x and ~), which depend on t as on a 
parameter. The trajectories of the system in the (x, D) phase plane are completely deter- 
mined by Eqs. (i0) and (12), which depend on the Weber number introduced in (7), and on the 

parameter • in (12). 
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Fig. i. a) Relative radius of vapor layer; b) its dimension- 
less thickness in states of maximum spreading and minimum 
thickness of vapor layer as functions of Weber number for 
• dashed lines represent asymptotic forms (13)-(16). 
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Fig. 2. Phase trajectories of the 

system for x:~0 : i) We ~ 0.41; 2) 
1.53; 3) 4.3; 4) 8.0; 5) 17.0; the 
end points of the trajectories cor- 
respond to the state of maximum 
spreading. 

Under normal conditions, ~NI0-a<~I for water, hydrocarbons, and most other liquids. 
Therefore, the value of x, can be estimated for z~0. Formally, the equation for it is 
i/q, = 0 from (12). We obtain the following asymptotic expressions for large and small 
Weber numbers: 

10 W e ~ l - } - O  , We>> 1; 
x ,  = 9 

=1+|/ W e + O ( W e ) ,  We ~\ " / 1 .  X, ( 1 3 )  

The value x = x m for which the thickness of the vapor layer is minimum is of interest. 

It is obtained from the equation d~(xm)/dx m = O~ We have 

xm= 1.406q-0 ~ W e >  1; 

/ 
W e  

x~ = 1 -I- ] /  -- O(We), We {{ 1. (14) 

The asymptotic forms (13) and (14) are plotted in Fig. la together with x, and x m as 
functions of We for • O. It is clear that the spreading of the drop over the vapor layer 
increases without bound with increasing We, but the minimum thickness of the vapor layer is 
reached for relatively insignificant spreading. 

The dependence of ~, on We for various z follows directly from (12). Using (13), we 
have, approximately for • i , 
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( 3 'I [ 0.2025 , r" i >> I; 
~ ] * =  , 4• I 1 ~- We ~ 0 (-~7(~f . )  i' 

' I( e) ,] ~ 1 . -  ~ - 0  , W e , ,  • , (We 3/8 ,~ I. ( 15 )  

In a similar way we obtain from (I0) and (14) for the minimum dimensionless thickness of the 
vapor layer when z << I 

~1,~ = 1.048 § 0 (We--~), We >) 1; 

~l,, = (2We) -~ /3  [1 -]- O ( ] f W e  )]. We << 1. ( 16 )  

A comparison of (15) and (16) shows that the expression for nm for We ~ i is actually 
suitable only for • The values of q, and ~m as functions of the Weber number are 
shown together with their asymptotic forms in Fig. lb. The phase trajectories of the system 
for various We and ~ I0 -4 are plotted in Fig. 2. 

Since d~/dx # 0 at x = x,, the derivatives dR/dt and dh/dt, together with v = dzc/dt , 
vanish simultaneously in accordance with (Ii); i.e., x, and n, correspond to the maxima of 
R and h reached at time t,. At later times the dimensionless phase trajectories are also de- 
termined by the solutions of Eq. (9) for the initial condition ~(t,) = q,, but in the range 
x < x,, and in view of the uniqueness of the solution of such a problem, coincide with the 
phase trajectories for times t < t,. Thus, after reaching the point (x,, ~,) in the phase 
plane, the system returns to the initial state (i, ~) on the same trajectory along which it 
reached the indicated point. The ratio of the kinetic energy of a drop moving away from the 
wall to the initial kinetic energy is identically equal to unity; i.e., the drop experiences 
an elastic rebound. Since dissipation was neglected, this is quite understandable. 

It follows from Fig. 2 that a drop moving toward the wall is practically undeformed un, 
til it nears the point of closest approach. Then the deformation begins, accompanied at 
first by a certain thinning of the vapor layer, and later by its thickening, which is greater 
the smaller the value of the parameter z. This pattern is then repeated in the reverse order. 
Near the state of maximum spreading the drop "bounces" for a short time on the wall. The 
transformation of a drop into a very thin liquid film and the indicated bouncing are fre- 
quently observed in experiments [12-15]. The rebounding drop does not begin to break up un- 
til We ~ 20 [15]. 

The critical conditions under which elastic rebound first occurs are of partricular in n 
terest. These conditions can be determined from the equations ~]m~A, corresponding to the 
concept that the drop comes into direct contact with the wall if the thickness of the vapor 
layer becomes less than the height of the roughness protuberances. Thus, by using (6), (7), 
and (16), the critical temperature drop for high and low We is 

o.LA 3 
A T L ~ 0 . 8 7  ~R~  W e ~ l  

1 9Lv~A 3 We ~ 1. (17) 
ATL ~ 2 v~Ro ' 

For We >> 1 the value of AT L is practically independent of the velocity with which the drop 
impinges on the wall, and for We << 1 it is independent of the surface tension of the liquid. 
Relations (17) are in qualitative agreement with experiment. 

Dynamic Properties of the System. From Eq. (i) and the determination of the constant 
C in accordance with (5)-(7), we have 

1 ~ d [ dzc ~2 R~ dR 
- f f  P V - - d { ' ~ - - - - ~ - - }  ~- - -  - - 4 a a W e R , - - R o  dt " (18) 

Using (ii), and integrating (18) with the initial condition dZc/dt = Vo at R = Ro, we 
obtain, after some simple transformations 

d.__~._R --~ R 3 . 1 Vo, ( 1 9 )  
dt - -  dR R , -  Ro] 

where  t h e  uppe r  and l ower  s i g n s  r e f e r  to  t h e  f o r w a r d  and backward  d i r e c t i o n s  o f  m o t i o n  a l o n g  
the phase trajectory. Substituting the expressions for h and dh/dR as functions of R into 
(19), we obtain the actual equation with separable variables for determining R(t). 
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Fig. 3. i) Relative radius and 2) dimensionless thick- 
ness of vapor layer as functions of dimensionless time 
for z = i0 -4 and We ~ 8.0 (x, ~ i0). 

Fig. 4. I) Dimensionless collision time and 2) rela- 

tive amount of heat transferred to drop as functions of 

maximum radius of vapor layer for z~0 . 

It follows from the results presented above that dh/dR is of the order z, and for • 
it can be neglected in comparison with Rg/R 3 = x -3 in (19) for all x except in the immediate 
neighborhoods of the points x = 1 and x = x,. Considering for definiteness the backward mo- 
tion along a phase trajectory, measuring time from the instant the drop is in the state of 

maximum spreading (x = x,), and integrating (19), we obtain in the dimensionless variables 

of (8) 

" I x , - - 1  F F ~ X , - - x  3 , 

L d;, t = T =  - @ 2x. ; t 
Ro x,  , . 

s m 1 7 ~ + V x , - - s  ] § 
4 x ~ , ~  1 7 Z , _ V x , _  ~ j" (20) 

This formula is displayed in Fig. 3, together with ~ as a function of r. It can be seen that 
the "bouncing" of the drop near the state of maximum spreading actually occurs for a rela- 

tively short time. 

The dependence of the dimensionless time T, for x to change from 1 to x,, which follows 

from (20), is shown in Fig. 4. The quantity Ro/vo enters as the characteristic time of the 
collision process, as should be expected from dimensionality considerations. For x, 

We § ~, T, + i; for We ~ i %~4(x,--I) ~ 3.268l/W-~. The corresponding dimensional collision 
times are Ro/vo and 1.633(pR~/o)z/2", the latter agrees to within a constant with the known 
period of the principal mode of free vibrations of a drop. 

Let us estimate the total heat flux to the drop during the time of collision, assuming 

that h ~const in the collision process. Using the expression for dT/dx from (19), and neg- 
lecting dh/dr, we have 

Z~,r . x A r  R~ 
Q,-~ . = ~ Red t - -  - 

h ,j h Vo 

j ~ /  - - 2 Q  ~ 1__ 1 , I /2  ] f . ~ . . ~  x , - - 1  

. / - -  . 

The d e p e n d e n c e  o f  Q/QO on x .  i s  a l s o  shown i n  F i g .  4.  
(21) 

z ~  

"~ x2 d'r dx = 
I , gz 

h Vo 

(21) 

For large and small We we obtain from 

Q / Q ~  W e ) ) I ;  

Q / Q ~  -, W e ~  1. (22) 
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The corresponding order of magnitude estimates for Q are 

ffL R~/3 Q....(kATlZ/a. _,/3 In +0.105 W e ~ l ;  

Q~(LAT) 2/a pS/O R~ ~/6~'~/a, We~ I. (23) qi/2 

The dependence of Q on AT, the volume of the drop, and the physical parameters is con- 
firmed qualitatively in most experiments. With increasing Ro the value of Q for small We 
is practically proportional to the volume of the drop, which agrees with the important prac- 
tical conclusion that the heat removed from a hot surface is proportional to the spray density 
[Ii]. According to (23), as Vo is increased, the flux Q at first increases and then begins 
to decrease. Unfortunately, the data obtained in different experiments for the thermal effect 
of a shock interaction of a drop with a superheated wall differ even in order of magnitude 

[12-14]. Therefore, strict comparison of theory and experiment is impossible, not only be- 
cause of the severe assumptions made in deriving (22) and (23), but also because of insuffi- 
cient experimental accuracy. 

As a result of not taking account of the unsteady nature of the heat-conduction process, 
the heat flux to a drop as it approaches the surface turns out to be somewhat smaller than 
the flux to it as it moves away. Therefore, the resisting force experienced by the drop as 

it approaches the surface is smaller than the force accelerating it as it moves away. As a 
result, the kinetic energy of the drop after collision should be larger than the initial en- 
ergy, which actually occurs if the velocity Vo is not too large [12]. On the other hand, the 
varying thickness of the vapor layer and its effect on the dynamics of the drop give rise to 
an additional resisting force which opposes the motion of the drop both toward and away from 
the wall. This effect contributes to the speeding up of the time rate of change of R and h 
while the drop is approaching the wall, and to the slowing down of this change as it recedes. 
The retardation of the drop is thus more rapid than its acceleration. As a result, the time 
dependences of x and q are not symmetrical with respect to the time t = t,, and the phase 
trajectory of the withdrawal of the drop from the wall does not coincide with its trajectory 
of approach. Accordingly, the drop loses kinetic energy in the collision process. All the 
characteristics of the process noted are confirmed by experiment [12]. 

In conclusion, we note that obtaining reliable results which might be used with con- 
fidence in engineering calculations involves not only taking account of unsteady and dis- 
sipative phenomena and introducing radiation heat flux, which is important for high wall tem- 
peratures, etc., but also taking account of collective effects which can severely alter the 
expected cooling pattern. In addition to the purely hydrodynamic aspect of the effect of the 
constraint of the motion -- the methods for investigating which were developed in [20], it is 
important to take account of collisions of drops in the immediate vicinity of the wall, which 
on the whole facilitate their direct contact with the wall, and also the effect of the flux 
of vapor from the wall, which is capable in a number of cases of slowing down drops as they 
approach it [21]. 

NOTATION 

6A is the elementary work; C, constant introduced in (6) and (7); E, kinetic energy of 
drop; F, free energy of surface tension; f, pressure force; H, characteristic length scale 
introduced in (6); h, thickness of vapor layer; j, mass of liquid evaporating per unit time 
from unit area of evaporation surface; L, heat of vaporization; p, pressure; Q, QO, total 
amount of heat transferred to drop in collision process, and its characteristic value; q, 
heat flux to unit area of evaporation surface; R, radius of vapor layer; r, radial coordinate; 
Ts, Tw, saturation temperature and wall temperature; AT = T w -- Ts; t, time; V, volume of 
drop; v, velocity of center of mass of drop; x, relative radius of vapor layer; Zc, coor- 
dinate of center of mass of drop; A, height of wall roughness; ~, dimensionless thickness of 
vapor layer; z, parameter defined in (12); ~, thermal conductivity, ~, kinematic viscosity; 
p, density of liquid; o, surface tension; T, dimensionless time; @, function determining 
shape and position of drop; and We, Weber number defined in (7). Subscripts 0 and m denote 
the initial state and the state with minimum thickness of vapor layer, respectively; * denotes 
state of maximum spreading. 
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